skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sung, Hyun-Il"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present the main results from a long-term reverberation mapping campaign carried out for the Seoul National University AGN Monitoring Project (SAMP). High-quality data were obtained during 2015–2021 for 32 luminous active galactic nuclei (AGNs; i.e., continuum luminosity in the range of 1044–46erg s−1) at a regular cadence, of 20–30 days for spectroscopy and 3–5 days for photometry. We obtain time lag measurements between the variability in the Hβemission and the continuum for 32 AGNs; 25 of those have the best lag measurements based on our quality assessment, examining correlation strength and the posterior lag distribution. Our study significantly increases the current sample of reverberation-mapped AGNs, particularly at the moderate-to-high-luminosity end. Combining our results with literature measurements, we derive an Hβbroadline region size–luminosity relation with a shallower slope than reported in the literature. For a given luminosity, most of our measured lags are shorter than the expectations, implying that single-epoch black hole mass estimators based on previous calibrations could suffer large systematic uncertainties. 
    more » « less
  2. Abstract The progenitor system of Type Ia supernovae (SNe Ia) is expected to be a close binary system consisting of a carbon/oxygen white dwarf (WD) and a nondegenerate star or another WD. Here, we present results from high-cadence monitoring observations of SN 2021hpr in a spiral galaxy, NGC 3147, and constraints on the progenitor system based on its early multicolor light-curve data. First, we classify SN 2021hpr as a normal SN Ia from its long-term photometric and spectroscopic data. More interestingly, we found a significant “early excess” in the light curve over a simple power-law ∼ t 2 evolution. The early light curve evolves from blue to red to blue during the first week. To explain this, we fitted the early part of the BVRI -band light curves with a two-component model consisting of ejecta–companion interaction and a simple power-law model. The early excess and its color can be explained by shock-cooling emission due to a companion star having a radius of 8.84 ± 0.58 R ⊙ . We also examined Hubble Space Telescope preexplosion images, finding no detection of a progenitor candidate, consistent with the above result. However, we could not detect signs of a significant amount of stripped mass from a nondegenerate companion star (≲0.003 M ⊙ for H α emission). The early excess light in the multiband light curve supports a nondegenerate companion in the progenitor system of SN 2021hpr. At the same time, the nondetection of emission lines opens the door for other methods to explain this event. 
    more » « less
  3. Abstract The broad-line region (BLR) size–luminosity relation has paramount importance for estimating the mass of black holes in active galactic nuclei (AGNs). Traditionally, the size of the HβBLR is often estimated from the optical continuum luminosity at 5100 Å, while the size of the HαBLR and its correlation with the luminosity is much less constrained. As a part of the Seoul National University AGN Monitoring Project, which provides 6 yr photometric and spectroscopic monitoring data, we present our measurements of the Hαlags of high-luminosity AGNs. Combined with the measurements for 42 AGNs from the literature, we derive the size–luminosity relations of the HαBLR against the broad Hαand 5100 Å continuum luminosities. We find the slope of the relations to be 0.61 ± 0.04 and 0.59 ± 0.04, respectively, which are consistent with the Hβsize–luminosity relation. Moreover, we find a linear relation between the 5100 Å continuum luminosity and the broad Hαluminosity across 7 orders of magnitude. Using these results, we propose a new virial mass estimator based on the Hαbroad emission line, finding that the previous mass estimates based on scaling relations in the literature are overestimated by up to 0.7 dex at masses lower than 107M
    more » « less
  4. null (Ed.)